
Overview
This document describes an API based on HTTP/1.1 protocol [RFC 2616].

Document version
1.1.5

Links
RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1
ISO 4217, Currency codes
ISO 8601, Date and time format

Changelog
1.0.0 (2017-12-26, ma)
documentation initialized
1.1.0 (2018-02-07, ma)
exit request added
1.1.1 (2018-05-07, ma)
exit request - add response fields
1.1.2 (2018-10-12, ma)
init request added demo flag, get log request added
1.1.3 (2018-10-22, ma)
addAmount request added
1.1.4 (2019-09-03)
getGamesSeries, getGamesInSerie requests added
1.1.5 (2020-03-20)
games list - big images

GIS

Overview

Integration data provided by GIS
1. Merchant ID
2. Merchant Key
3. Base API URL

Endpoints and Base API URL
For example: If base API URL is ​https://gis.com/api/gisv1​ and Endpoint is /games/lobby,
then calls from integrator to GIS should be ​https://gis.com/api/gisv1/games/lobby

Request format
Query parameters should be passed with ​application/x-www-form-urlencoded​ ​content
type

Response format
Default response format is ​json​ ​with ​Content-Type: application/json​ ​header

List of used HTTP codes
● 200​: OK. Everything worked as expected.
● 201​: A resource successfully created in response to a POST request. The Location

header contains the URL pointing to the newly created resource.
● 204​: The request handled successfully and the response contains no body content (like a

DELETE request).
● 304​: The resource was not modified. You can use the cached version.
● 400​: Bad request. This could be caused by various actions by the user, such as providing

invalid JSON data in the request body, providing invalid action parameters, etc.
● 401​: Authentication failed.
● 403​: The authenticated user is not allowed to access the specified API endpoint.
● 404​: The requested resource does not exist.
● 405​: Method not allowed. Please check the Allow headers for the allowed HTTP methods.
● 415​: Unsupported media type. The requested content type or version number is invalid.
● 422​: Data validation failed (in response to a POST request, for example). Please check

the response body for detailed error messages.
● 429​: Too many requests. The request was rejected due to rate limiting.
● 500​: Internal server error. This could be caused by internal program errors.

Error response
Generic error response contains a single object with following attributes:
● name, string​ exception name
● message, string​ exception message
● code, integer, default: 0​ exception code
● status, integer​ HTTP status code
Response example:
HTTP/1.1 404 Not Found

...

{

"name": "Not Found Exception",

"message": "The requested resource was not found.",

"code": 0,

"status": 404

}

Game launch flow
Games should be stored/cached on the client side after retrieval. Game could be launched in
several steps according to scenario based on lobby availability.
1. Call ​/init
2. Launch game by redirecting player to the provided URL

Security
All requests should contain authorization headers (except Launch phase with player
redirection).

Authorization headers
● X-Merchant-Id​: Merchant ID provided by integration manager
● X-Timestamp​: Request timestamp. If differ from current timestamp for more than 30

seconds - request considered expired
● X-Nonce​: Random string
● X-Sign​: Sign calculated with sha1 hmac

X-Sign calculation
1. Merge request array with authorization headers array
2. Sort resulting array by key in ascending order
3. Generate a URL-encoded query string from this array
4. Use sha1 hmac algorithm with Merchant Key (provided by integration manager) for signing

PHP example of the X-Sign calculation
$merchantKey = 'Merchant Key provided by integration manager';

$headers = [

 'X-Merchant-Id' => 'value',

 'X-Timestamp' => time(),

 'X-Nonce' => md5(uniqid(mt_rand(), true)),

];

$requestParams = [

 'game_uuid' => $gameId,

 'player_id' => $playerId,

 'credit_price' => 1,

 'balance' => $playerBalance,

 'currency' => 'USD',

 'session_id' => 'game_session_id',

 'return_url' => $return_url,

 'exit_url' => $exit_url,

 'language' => 'ENG',

];

$mergedParams = array_merge($requestParams, $headers);

ksort($mergedParams);

$hashString = http_build_query($mergedParams);

$XSign = hash_hmac('sha1', $hashString, $merchantKey);

Example
Request:
GET /games

...

X-Merchant-Id: ff955b5759b3885f08cf125d4454ceb4

X-Timestamp: 1471857411

X-Nonce: e115cf0f66a645aca08225c9c1b20b80

X-Sign: 1bb7e4cd5c43f9885ba6a1758ad30fc562f88821

...

Games

Endpoint URL
/games

[GET /] ​Retrieving games list
You will receive games collection available for your Merchant ID

Game item fields
● uuid: string​, Game UUID that will be used in ​/init
● name: string​, Game name
● image: string​, Game image url
● image_big​: ​string​, Game image big url (370 x 185 pixels)
● type: string​, Game type
● provider: string​, Game provider name
● is_mobile: integer​, 1 or 0 - indicates if game used for mobile devices and should be

opened in new window (not in iframe or some <div> container)

Example
Request:
GET /games HTTP/1.1

...

Response:
HTTP/1.1 200 OK

...

{

"items": [

{

"uuid": "abcd12345",

"name": "Book of Ra",

"image": "​https://image-url.com​",

"image_big": "https://image-url.com/big_img_path/"

"type": "Slots",

"serie": "gaminator",

"provider": "abcd12345",

"is_mobile": 0

}, {

"uuid": "abcd12345",

"name": "Baccarat",

"image": "https://image-url.com",

"type": "Baccarat",

"serie": "live",

"provider": "abcd12345",

"is_mobile": 0

https://image-url.com/

}

]

}

Init
This action will prepare game for launch and return final url where player should be
redirected to start playing.

Endpoint URL
/init

[POST /]​ Initializing game session

Request fields
● game_uuid: string, required​, Game UUID provided in /games
● player_id: string, required​, Unique player ID on the integrator side
● currency: string, required​, Player currency that will be used in this game

session
● balance: double, required​, Player’s balance
● credit_price: double, required​, Credit price for game session
● session_id: string, required​, Game session ID on the integrator side
● return_url: string, required​, Redirect player to this url after game ends
● exit_url: string, required,​ Send ​/exit​ request from GIS to integrator to this

url after player finish the game
● language: string, optional​, Player language
● demo: boolean, optional​, Set ​true​ to run game session in demo mode (give player

100 000 demo credits without the possibility of collect)

Response fields
url: string​, redirect player to this url for start selected game

Example
Request:
POST /init HTTP/1.1

...

game_uuid=abcd12345&player_id=abcd12345&player_name=abcd12345&curre

ncy=USD&

Response:
HTTP/1.1 200 OK

...

{

 "url": "https://gis-url.com/endpoint"

}

Game launch
To launch the game redirect player to the URL returned by ​/init​.

Add amount
This action will add specified credits amount to game session balance

Endpoint URL
/addAmount

[POST /]​ Add credits amount

Request fields
● session_id: string, required​, Game session ID on the integrator side
● amount: double, required​, Amount of credits that will be added to player’s balance

Example
Request:
POST /addAmount HTTP/1.1

...

session_id=abc&amount=20

Response:
HTTP/1.1 200 OK

...

Exit
This action will reset and exit the active game.

Endpoint URL
/exit

[POST /]​ Exit the game

Request fields
● session_id: string, required​, Game session ID on the integrator side

Response fields
● balance: double​, Player’s balance
● session_id: string​, Game session ID on the integrator side

Example
Request:
POST /exit HTTP/1.1

...

session_id=abc

Response:
HTTP/1.1 200 OK

...

Get Log
This action will request game logs.

Endpoint URL
/getLog

[POST /]​ get game logs

Request fields
● session_id: string, required​, Game session ID on the integrator side
● from: int, required​, Unix Timestamp to get log "from date"
● to: int, required​, Unix Timestamp to get log "to date"

Response fields
list of rows:

● date: int​, game turn date
● game: string​, game name
● line: int

● bet: int

● amount: double​, terminal balance
● cp: double​, game turn denominator
● pr: double​, game turn prize

Example
Request:
POST /getLog HTTP/1.1

...

session_id=abc&from=1100&to=1200

Response:
HTTP/1.1 200 OK

...

Get Games Series

Endpoint URL
/getGamesSeries

[GET /]​ Retrieving games series list
You will receive collection of all games series available for your Merchant ID

Response fields
list of rows ​string​, game series

Example
Request:
GET /getGamesSeries HTTP/1.1

...

Response:
HTTP/1.1 200 OK

...

{

"items": [“gaminator1”, “global”]

}

Get Games In Serie
This action will request games in specified serie.

Endpoint URL
/getGamesInSerie

[POST /]​ get games in serie

Request fields
● serie: string, required​, games serie

Game item fields
● uuid: string​, Game UUID that will be used in ​/init
● name: string​, Game name
● image: string​, Game image url
● type: string​, Game type
● provider: string​, Game provider name
● is_mobile: integer​, 1 or 0 - indicates if game used for mobile devices and should be

opened in new window (not in iframe or some <div> container)

Example
Request:
POST /getGamesInSerie HTTP/1.1

…

serie=global

Response:
HTTP/1.1 200 OK

...

{

"items": [

{

"uuid": "abcd12345",

"name": "Book of Ra",

"image": "​https://image-url.com​",

"type": "Slots",

"serie": "gaminator",

"provider": "abcd12345",

"is_mobile": 0

}, {

"uuid": "abcd12345",

"name": "Baccarat",

"image": "https://image-url.com",

"type": "Baccarat",

https://image-url.com/

"serie": "live",

"provider": "abcd12345",

"is_mobile": 0

}

]

}

Integrator

Overview
Integrator should provide endpoint URL to communicate with GIS during the game session
GIS could send 1 type of calls to integrator
● Exit

Request format
All calls from GIS to integrator will be done via ​POST​ and parameters will be passed with
application/x-www-form-urlencoded ​content type

Response format
All integrator responses should have ​Content-Type: application/json​ header,
json​ format and ​HTTP/1.1 200 OK​ status code.

Security
All requests should contain authorization headers (except Launch phase with player
redirection).

Authorization headers
● X-Merchant-Id​: Merchant ID provided by integration manager
● X-Timestamp​: Request timestamp. If differ from current timestamp for more than 30

seconds - request considered expired
● X-Nonce​: Random string
● X-Sign​: Sign calculated with sha1 hmac

X-Sign calculation
1. Merge request array with authorization headers array
2. Sort resulting array by key in ascending order
3. Generate a URL-encoded query string from this array
4. Use sha1 hmac algorithm with Merchant Key (provided by integration manager) for signing

PHP example of the X-Sign calculation
$merchantKey = 'Merchant Key provided by integration manager';

$headers = [

 'X-Merchant-Id' => 'value',

 'X-Timestamp' => time(),

 'X-Nonce' => md5(uniqid(mt_rand(), true)),

];

$XSign = 'Get header value'

$requestParams = [

 'game_uuid' => 'abcd12345',

 'currency' => 'USD',

];

$mergedParams = array_merge($requestParams, $headers);

ksort($mergedParams);

$hashString = http_build_query($mergedParams);

$expectedSign = hash_hmac('sha1', $hashString, $merchantKey);

if ($XSign !== $expectedSign) {

throw new Exception ('Invalid sign');

}

Exit
When player finish the game and want to return to integrator’s site, GIS will send this action
before redirect to ‘return_url’.

Endpoint URL
/exit

[POST /]​ Initializing game session

Request fields
● session_id​: string, required​, session ID that GIS was received from integrator

with ​/init​ request
● balance​: double, required​, new actual player’s balance after playing the game

Example
Request:
POST /exit HTTP/1.1

session_id=abcd12345&balance=200.00

Response:
HTTP/1.1 200 OK

...

